
CS 280 Algorithmic Game Theory
Ioannis Panageas

Inspired and some figures
by C. Daskalakis slides and T. Roughgarden notes

L07b Complexity of Computing NE



Warm-up: Reductions in NP

Intro to AGT

Example: INDEPENDENT SET (IS) Problem

Given a simple undirected graph 𝐺(𝑉, 𝐸) and 𝑘, is there an independent set in 𝐺 of 

size ≥  𝑘. Independent set is called a set 𝐼 ⊂ 𝑉 of vertices such that pairwise the 

vertices in 𝐼 are not connected.
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Claim: INDEPENDENT SET is NP-complete.

Proof: (1) INDEPENDENT SET belongs to NP (why?).

(2) Reduce 3-SAT to INDEPENDENT SET. Since 3-SAT is NP-

hard, INDEPENDENT SET is NP-hard. 
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Problem: 3-SAT
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literals, is 𝐸 satisfiable?

3-SAT reduction to IS

Intro to AGT



Problem: 3-SAT

Given a Boolean expression 𝐸, such that 𝐸 is a conjunction 
of clauses, where each clause is a disjunction of exactly 3 
literals, is 𝐸 satisfiable?

A literal is a Boolean expression consisting of just a single Boolean 
variable, or the negation of a Boolean variable.
• Example: “𝑥1” and “𝑥2” are literals.

A clause is a Boolean expression of the form “ℓ1 ∨ ℓ2 ∨ ⋯ ∨ ℓ𝑘”, i.e. a 
disjunction of some literals ℓ1, ℓ2, … , ℓ𝑘. In 3-SAT 𝑘 = 3.

• Example: “C1 ≡ 𝑥1 ∨ 𝑥2 ∨ 𝑥3” is a clause. 

A Boolean expression is a conjunction of clauses.

Example: “𝐸 ≡ 𝐶1 ∧ 𝐶2 ∧ 𝐶3” is a clause. 
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Satisfiability: Can you assign True, False to the variables so that the 

expression is True? 
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3-SAT reduction to IS
Claim: Expression 𝐸 with 𝑘 clauses is satisfiable if and only if the induced 

graph G has an IS of size 𝑘.

Therefore, given a graph 𝑮 and a 𝒌, if we can identify in poly-time if there 

exists an Independent Set of size at least k, then we can solve in poly-time 

3-SAT. 
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Question: Can the problem of computing a Nash Equilibrium be NP-

complete?

Answer: (Megiddo) Suppose we have a reduction from SAT to NASH, s.t any 
solution to the instance of NASH tells us whether or not the SAT instance has 
a solution. Then we could turn this into a nondeterministic algorithm for 
verifying that an instance of SAT has no solution: Just guess a solution of the 
NASH instance, and check that it indeed implies that the SAT instance has no 
solution. NP = co-NP (unlikely).



The class PLS

Intro to AGT

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify 

local search problems. An abstract local search problem is specified by three 

polynomial-time algorithms.

Canonical Problem: LOCAL MAX-CUT

Given an undirected graph 𝐺 = (𝑉, 𝐸) with non-negative weights 𝑤𝑒 on edges, 

find a cut             that maximizes the total weight of cut edges. You are allowed to 

do only local moves that improve the objective, i.e., moving one vertex 𝑣 from 
one side of the cut to the other that improves the total weight of cut edges.



The class PLS

Intro to AGT

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify 

local search problems. An abstract local search problem is specified by three 

polynomial-time algorithms.

Canonical Problem: LOCAL MAX-CUT

Given an undirected graph 𝐺 = (𝑉, 𝐸) with non-negative weights 𝑤𝑒 on edges, 

find a cut             that maximizes the total weight of cut edges. You are allowed to 

do only local moves that improve the objective, i.e., moving one vertex 𝑣 from 
one side of the cut to the other that improves the total weight of cut edges.

Remark: (classic) MAX-CUT is NP-Complete.



The class PLS

Intro to AGT

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify 

local search problems. An abstract local search problem is specified by three 

polynomial-time algorithms.

1. The first algorithm takes as input an instance and outputs an arbitrary 
feasible solution (for LOCAL MAX-CUT this is an arbitrary cut).



The class PLS

Intro to AGT

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify 

local search problems. An abstract local search problem is specified by three 

polynomial-time algorithms.

1. The first algorithm takes as input an instance and outputs an arbitrary 
feasible solution (for LOCAL MAX-CUT this is an arbitrary cut).

2. The second algorithm takes as input an instance and a feasible solution, and 
returns the objective function value of the solution (for LOCAL MAX-CUT it 
is the sum of  the total weight of the edges crossing the cut).



The class PLS

Intro to AGT

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify 

local search problems. An abstract local search problem is specified by three 

polynomial-time algorithms.

1. The first algorithm takes as input an instance and outputs an arbitrary 
feasible solution (for LOCAL MAX-CUT this is an arbitrary cut).

2. The second algorithm takes as input an instance and a feasible solution, and 
returns the objective function value of the solution (for LOCAL MAX-CUT it 
is the sum of  the total weight of the edges crossing the cut).

3. The third algorithm takes as input an instance and a feasible solution and 
either reports “locally optimal” or produces a better solution (for LOCAL 
MAX-CUT it checks all possible |𝑉| moves. If one improves the objective 
choose that move). 
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The class PPAD

Intro to AGT

Suppose that an exponentially large graph with vertex set {0,1}n 

(i.e, 2𝑛 vertices) is defined by two circuits:

Pnode node

possible previous

Nnode node

possible next

Example:
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Suppose that an exponentially large graph with vertex set {0,1}n 

(i.e, 2𝑛 vertices) is defined by two circuits:

Pnode node

possible previous

Nnode node

possible next

Example:

Canonical Problem: 

END OF THE LINE: Given  𝑃, 𝑁: If  0n is an unbalanced node, find 

another unbalanced node. Otherwise return 0𝑛.

PPAD (Papadimitriou 94’): All problems in FNP reducible to END OF 

THE LINE.
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